Features

- Operating voltage 2.7 V to 5.5 V
- PLL1 operating frequency:
-2.5 GHz with prescaler ratios of $32 / 33$ and 64/65
- PLL2 operating frequency:
—600 MHz with prescaler ratios of $8 / 9$ and 16/17
- Lock detect feature
- Power-down mode $\mathrm{I}_{\mathrm{CC}}<1 \mu \mathrm{~A}$ typical at 3.0V
- 20-pin TSSOP (Thin Shrink Small Outline Package)

Applications

The Cypress WB1330 is a dual serial input PLL frequency synthesizer designed to combine the RF and IF mixer frequency sections of wireless communications systems. One 2.5GHz and one $600-\mathrm{MHz}$ prescaler, each with pulse swallow capability are included. The device operates from 2.7 V and dissipates only 30 mW . (See Figure 1 for an example application diagram of the WB1330.)

WB1330 Dual Hi-Lo PLL Block Diagram

Pin Configuration

Figure 1. Application Diagram Example - WB1330 2.5-GHz/600-MHz Hi/Lo Dual PLL

WB1330

Pin Definitions

Pin Name	Pin No.	Pin Type	Pin Description
$\mathrm{V}_{\mathrm{CC}} 1$	1	P	Power Supply Connection for PLL1 and PLL2: When power is removed from both the $\mathrm{V}_{\mathrm{CC}} 1$ and $\mathrm{V}_{\mathrm{CC}} 2$ pins, all latched data is lost.
$\mathrm{V}_{\mathrm{p}} 1$	2	P	PLL1 Charge Pump Rail Voltage: This voltage accommodates VCO circuits with tuning voltages higher than the V_{CC} of PLL1.
$\mathrm{D}_{\mathrm{O}} \mathrm{PLL1}$	3	0	PLL1 Charge Pump Output: The phase detector gain is $\mathrm{I}_{\mathrm{P}} / 2 \pi$. Sense polarity can be reversed by setting the FC bit in software (via the Shift Register).
GND	4	G	Analog and Digital Ground Connection: This pin must be grounded.
$\mathrm{F}_{\text {IN }} 1$	5	1	Input to PLL1 Prescaler: Maximum frequency 2.5 GHz .
$\mathrm{F}_{\text {IN }} 1$ \#	6	I	Complementary Input to PLL1 Prescaler: A bypass capacitor should be placed as close as possible to this pin and must be connected directly to the ground plane.
GND	7	G	Analog and Digital Ground Connection: This pin must be grounded.
OSC_IN	8	1	Oscillator Input: This input has a $\mathrm{V}_{\mathrm{CC}} / 2$ threshold and CMOS logic level sensitivity.
GND	9	G	Reference Ground Connection: This pin must be grounded.
$\mathrm{F}_{\mathrm{O}} / \mathrm{LD}$	10	0	Lock Detect Pin of PLL1 Section: This output is HIGH when the loop is locked. It is multiplexed to the output of the programmable counters or reference dividers in the test program mode. (Refer to Table 3 for configuration.)
CLOCK	11	I	Data Clock Input: One bit of data is loaded into the Shift Register on the rising edge of this signal.
DATA	12	I	Serial Data Input
LE	13	I	Load Enable: On the rising edge of this signal, the data stored in the Shift Register is latched into the reference counter and configuration controls, PLL1 or PLL2 depending on the state of the control bits.
GND	14	G	Analog and Digital Ground Connection: This pin must be grounded.
$\mathrm{F}_{\text {IN }} 2$ \#	15	I	Complementary Input to PLL2 Prescaler: A bypass capacitor should be placed as close as possible to this pin and must be connected directly to the ground plane.
$\mathrm{F}_{\text {IN }}{ }^{2}$	16	I	Input to PLL2 Prescaler: Maximum frequency 600 MHz .
GND	17	G	Analog and Digital Ground Connections: This pin must be grounded.
DoPLL2	18	0	PLL2 Charge Pump Output: The phase detector gain is $\mathrm{I}_{\mathrm{p}} / 2 \pi$. Sense polarity can be reversed by setting the FC bit in software (via the Shift Register).
V 2 2	19	P	PLL2 Charge Pump Rail Voltage: This voltage accommodates VCO circuits with tuning voltages higher than the V_{CC} of PLL2.
$\mathrm{V}_{\mathrm{CC}}{ }^{2}$	20	P	Power Supply Connections for PLL1 and PLL2: When power is removed from both the $\mathrm{V}_{\mathrm{CC}} 1$ and $\mathrm{V}_{\mathrm{CC}} 2$ pins, all latched data is lost.

WB1330

Absolute Maximum Ratings

Stresses greater than those listed in this table may cause permanent damage to the device. These represent a stress rating
only. Operation of the device at these or any other conditions above those specified in the operating sections of this specification is not implied. Maximum conditions for extended periods may affect reliability.

Parameter	Rescription	Rating	Unit
V_{CC} or V_{P}	Power Supply Voltage	-0.5 to +6.5	V
$\mathrm{~V}_{\text {OUT }}$	Output Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{I}_{\text {OUT }}$	Output Current	± 15	mA
$\mathrm{~T}_{\mathrm{L}}$	Lead Temperature	+260	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-55 to +150	${ }^{\circ} \mathrm{C}$

Handling Precautions

Devices should be transported and stored in antistatic containers.
These devices are static sensitive. Ensure that equipment and personnel contacting the devices are properly grounded.
Cover workbenches with grounded conductive mats.

Always turn off power before adding or removing devices from system.
Protect leads with a conductive sheet when handling or transporting PC boards with devices.
If devices are removed from the moisture protective bags for more than 36 hours, they should be baked at $85^{\circ} \mathrm{C}$ in a moisture free environment for 24 hours prior to assembly in less than 24 hours.

Recommended Operating Conditions

Parameter	Description	Test Condition	Rating	Unit
$\mathrm{V}_{\mathrm{CC} 1}$,	Power Supply Voltage		2.7 to 5.5	V
$\mathrm{~V}_{\mathrm{CC} 2}$			$\mathrm{~V}_{\mathrm{CC}}$ to +5.5	V
$\mathrm{~V}_{\mathrm{P}}$	Charge Pump Voltage			
T_{A}	Operating Temperature	Ambient air at 0 CFM flow	-40 to +85	${ }^{\circ} \mathrm{C}$

Electrical Characteristics: $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{P}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Unless otherwise specified

Parameter	Description	Test Condition	Pin	Min.	Typ.	Max.	Unit
I_{CC}	Power Supply Current PLL1 + PLL2	$\mathrm{V}_{\mathrm{CC}} 1=\mathrm{V}_{\mathrm{CC}} 2=3.0 \mathrm{~V}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}} 1, \\ & \mathrm{~V}_{\mathrm{CC}}{ }^{2} \end{aligned}$		11		mA
IPD	Power-down Current	Power-down, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{CC}} 1, \\ \mathrm{~V}_{\mathrm{CC}}^{2} \end{array}$		1	25	$\mu \mathrm{A}$
$\mathrm{F}_{\text {IN }} 1$	Operating Frequency	PLL1	$\mathrm{F}_{\text {IN }} 1$	100		2500	MHz
$\mathrm{F}_{\text {IN }} 2$		PLL2	$\mathrm{F}_{\mathrm{IN}} 2$	45		600	MHz
Fosc	Oscillator Input Frequency		OSC_IN	2		45	MHz
F ϕ	Maximum Phase Detector Frequency			10			MHz
$\begin{aligned} & \mathrm{PF}_{\mathrm{IN}_{1}}, \\ & \mathrm{PF}_{I N} 2 \end{aligned}$	Input Sensitivity	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	$\mathrm{FIN}^{1{ }^{[1]}}$	-15		4	dBm
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$		-10		4	dBm
$\begin{aligned} & \hline \mathrm{PF}_{\mathrm{IN}} 1, \\ & \mathrm{PF}_{\mathrm{IN}} 2 \end{aligned}$		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 5.5 V	$\begin{array}{\|l\|l\|l\|} \hline \mathrm{F}_{1 N}{ }^{[2]} \\ \mathrm{F}_{\mathrm{IN}^{2} 2^{[2]}} \end{array}$	-15		4	dBm
$\mathrm{V}_{\text {OSC }}$	Oscillator Input Sensitivity	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	OSC_IN	0.5			$\mathrm{V}_{\mathrm{P}-\mathrm{P}}$
$\mathrm{I}_{\text {IH }}, \mathrm{I}_{\text {IL }}$	Oscillator Input Current			-100		100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	DATA, CLOCK, LE	$\mathrm{V}_{\mathrm{CC}}{ }^{*} 0.8$			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage					$\mathrm{V}_{\mathrm{CC}}{ }^{*} 0.3$	V
I_{H}	High Level Input Current			-10	0.5	10	$\mu \mathrm{A}$
IIL	Low Level Input Current			-10	0.5	10	$\mu \mathrm{A}$
V_{OH}	High level Output Voltage	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=1 \mathrm{~mA}$	$\mathrm{F}_{\mathrm{O}} / \mathrm{LD}$	2.2			V
V_{OL}	Low Level Output Voltage					0.4	V
$\mathrm{ID}_{\mathrm{OH}(\mathrm{SO})}$	ID ${ }_{\text {O }}$ High, Source Current	$\begin{aligned} & V_{C C}=V_{P}=3.0 V \\ & D_{O}=V_{P} / 2 \end{aligned}$	$\begin{aligned} & \hline \mathrm{D}_{\mathrm{O}} \mathrm{PLL1} \\ & \mathrm{D}_{\mathrm{O}} \mathrm{PLL2} \end{aligned}$		-3.8		mA
$\mathrm{ID}_{\mathrm{OL}(\mathrm{SO})}$	IDo Low, Source Current				-1		mA
$1 \mathrm{D}_{\mathrm{OH}(\mathrm{SI})}$	ID ${ }_{\text {O }}$ High, Sink Current				3.8		mA
$\mathrm{ID}_{\mathrm{OL}(\mathrm{SI})}$	ID ${ }_{\text {O }}$ Low, Sink Current				1		mA
$\Delta \mathrm{ID}_{\mathrm{O}}$	ID ${ }_{\mathrm{O}}$ Charge Pump Sink and Source Mismatch				3	15	\%
ID $\mathrm{O}_{\text {vs }} \mathrm{T}$	Charge Pump Current Variation vs Temperature	$-40^{\circ} \mathrm{C}<\mathrm{T}<85^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{DO}}=\mathrm{V}_{\mathrm{P}} / 2^{[3]}$			5		\%
IOFF	High-Impedance Leakage Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{P}}=3.0 \mathrm{~V},$ Loop locked, between reference spikes			± 2.5		nA

Notes:

1. $2.0 \mathrm{GHz} \leq \mathrm{F}_{\mathrm{IN}} \leq 2.5 \mathrm{GHz}$.
2. $\mathrm{F}_{\mathrm{IN}}<2.0 \mathrm{GHz}$.
3. $\mathrm{ID}_{\mathrm{o}} \mathrm{vs} \mathrm{T}$; Charge pump current variation vs. temperature.
$\left[\mathrm{IID}_{\mathrm{O}(\mathrm{SI}) @ \mathrm{~T}^{1}-\mathrm{II} \mathrm{D}_{\mathrm{O}(\mathrm{SI}) @ 25^{\circ} \mathrm{C}} \mathrm{I} / / I \mathrm{ID}}^{\mathrm{O}(\mathrm{SI}) @ 25^{\circ} \mathrm{C}^{*} 100 \% \text { and }}\right.$
$\left[\mathrm{IID}_{\mathrm{O}(\mathrm{SO}) @ \mathrm{~T}^{\mathrm{I}}-\mathrm{IID}}^{\left.\mathrm{O}(\mathrm{SO}) @ 25^{\circ} \mathrm{C} \mathrm{I}\right] / \mathrm{IID}} \mathrm{O}(\mathrm{SO}) @ 25^{\circ} \mathrm{C} \mathrm{I}^{*} 100 \%\right.$.

Timing Waveforms

Key:

Phase Detector Output Waveform

Do Charge Pump Output Current Waveform

WB1330

Timing Waveforms (continued)
Serial Data Input Timing Waveform ${ }^{[4,5,6,7]}$

Serial Data Input

Data is input serially using the DATA, CLOCK, and LE pins. Two control bits direct data into the locations given in Table 1.
Table 1. Control Configuration

CNT1	CNT2	Function
0	0	Program Reference 2: $\mathrm{R}=3$ to 32767, set PLL2 (low frequency) phase detector polarity, set current in PLL2, set PLL2 three-state, set monitor selector to PLL2.
0	1	Program Reference 1: R = 3 to 32767, set PLL1 (high frequency) phase detector polarity, set current in PLL1, set PLL1 three-state, set monitor selector to PLL1
1	0	Program Counter for PLL2: $=0$ to 15, $\mathrm{B}=3$ to 2047, set PLL2 prescaler ratio, set power- down to PLL2.
1	1	Program Counter for PLL1: $\mathrm{A}=0$ to 63, $\mathrm{B}=3$ to 2047, set PLL1 prescaler ratio, set power- down to PLL1.

[^0]Table 2. Shift Register Configuration ${ }^{[8]}$

Table 3. F_{O} /LD Pin Truth Table

FO (Bit 22)		LD (Bit 21)		Fo/LD Pin Output State
PLL1	PLL2	PLL1	PLL2	
0	0	0	0	Disable
0	0	0	1	PLL2 Lock Detect
0	0	1	0	PLL1 Lock Detect
0	0	1	1	PLL1/PLL2 Lock Detect
0	1	X	0	PLL2 Reference Divider Output
1	0	X	0	PLL1 Reference Divider Output
0	1	X	1	PLL2 Programmable Divider Output
1	0	X	1	PLL1 Programmable Divider Output
1	1	0	1	PLL2 Counter Reset
1	1	1	0	PLL1 Counter Reset
1	1	1	1	PLL1/PLL2 Counter Reset

Notes:

8. The MSB is loaded in first.
9. Low count ratios may violate frequency limits of the phase detector.

Table 4. 7-Bit Swallow Counter (A) Truth Table ${ }^{[10]}$

Divide Ratio A	A7	A6	A5	A4	A3	A2	A1
PLL1 (High Frequency)							
0	X	0	0	0	0	0	0
1	X	0	0	0	0	0	1
: $:$: $:$::	: $:$::	::	: $:$::
62	X	1	1	1	1	1	0
63	X	1	1	1	1	1	1
PLL2 (Low Frequency)							
0	X	X	X	0	0	0	0
1	X	X	X	0	0	0	1
: $:$: $:$::	: $:$::	::	: $:$::
14	X	X	X	1	1	1	0
15	X	X	X	1	1	1	1

Table 5. 11-Bit Programmable Counter (B) Truth Table ${ }^{[11]}$

Divide Ratio B	B11	B10	B9	B8	B7	B6	B5	B4	B3	B2	B1
3	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	1	0	0
$::$	$:::$	$:::$	$::$	$:::$	$:::$	$::$	$::$	$::$	$::$	$::$	$::$
2046	1	1	1	1	1	1	1	1	1	1	0
2047	1	1	1	1	1	1	1	1	1	1	1

Table 6. 15-Bit Programmable Reference Counter (for PLL1 and PLL2) Truth Table ${ }^{[11]}$

Divide Ratio R	R15	R14	R13	R12	R11	R10	R9	R8	R7	R6	R5	R4	R3	R2	R1
3	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
$:::$	$:::$	$::$	$::$	$:::$	$::$	$:::$	$::$	$:::$	$::$	$::$	$::$	$::$	$:::$	$::$	$::$
32766	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
32767	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Ordering Information ${ }^{[12]}$

Ordering Code	Package Name	Package Type	TR
WB1330	X	20-pin TSSOP (0.173" wide)	Tape and Reel Option

Notes:

10. B is greater than or equal to A
11. Divide ratio less than 3 is prohibited. The divide ratio can be calculated using the following equation:
fvco $=\left\{\left(P^{*} B\right)+A\right\}^{*}$ fosc $/ R$ where $(A \leq B)$
fvco: Output frequency of the external VCO.
fosc: The crystal reference oscillator frequency.
A: Preset divide ratio of the 7 -bit swallow counter (0 to 63) and the 4-bit swallow counter (0 to 15).
B: Preset ratio of the 11-bit programmable counter (3 to 2047).
P: Preset divide ratio of the dual modulus prescaler.
R: Preset ratio of the 15-bit programmable reference counter (3 to 32767).
The divide ratio $N=\left(P^{*} B\right)+A$.
12. Operating temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Document \#: 38-00826-B

WB1330

Package Diagram

TOP VIEW

SEE NOTE 9

END VIEW

NOTES:

1. DIETHICKNESS ALOMAEELII 0.2790 .0127 (0.110 ± 0005 INCHES) S. "T"IGAreference datum
2. "D" \&"E"ARE Reference datums and do not MEASDEMOLD TLASH OR PROTRUSIONS, ANS ARE
PRotrusions shall Not ExCEEDO 1.15 mm PER SID
DIMENSIONS THE LENGTH OF TERMINJ
3. TERMINAL POSTIINS ARE SHOWN FOR REFERENCE ONLY

A FORMED LEADS SHALL BE PLANAR WTHTH RESFECT TO

(1) DETAL "C.'TO BE DETERMNEDAT 0.10
o CONTROLIING DIMENSION: MILIMETER
THIS PART IS COMPL LANT WITH JEDEC SPECIFICATION MO-153

$\frac{\text { DETAIL 'A' }}{(\text { ScALE: } 30 / 1)}$

DETAIL "B"
$\frac{\text { DSCALE: } 30 / 1)}{\text { DAMEAR PROTRUSION }}$

Physical Dimensions In Millimeters
20 Lead ($0.173^{\prime \prime}$ Wide) TSSOP Package Order Number X
20" clear antistatic tubes, 76 units/tube
JEDEC Outline MO-153

THIS TABLE IN MILLIMETERS

THIS TABLE IN INCHES

	COMMON DIMENSIONS			${ }^{N_{0}}{ }_{\text {T }}$	NOTE VARIATIONS	${ }^{4}$			$\stackrel{6}{N}$
	MIN.	NOM.	MAX.			MIN	NOM.	MAX.	
A			. 0433			. 114	. 118	. 122	8
A_{1}	. 002	004	. 006		AB	. 193	. 197	. 201	14
A_{2}	. 0335	. 0354	. 0374		AC	. 193	. 197	. 201	16
b	. 0075		. 0118	8	AD	. 252	256	. 260	20
b1	. 0075	. 0087	. 0098		AE	. 303	. 307	. 311	24
	. 0035		. 0079		AF	. 378	. 382	. 386	28
c1	. 0035	. 0050	. 0053						
D	SEE VARIATIONS			4					
-	169	173	177	4					
e	0256 BSC								
H	246	252	256						
L	. 020	024	028	5					
N	SEE VARIATIONS			6					
$\stackrel{\text { c }}{\text { c }}$	0°	4°	8°						

VARIATION AF IS DESIGNED BUT NOT TOOLED

[^0]: Notes:
 4. $\mathrm{t} 1-\mathrm{t} 5=50 \mu \mathrm{~s}>\mathrm{t}>0.5 \mu \mathrm{~s}$
 5. CLOCK may remain HIGH after latching in data.
 6. DATA is shifted in with the MSB first.
 7. For DATA definitions, refer to Table 2.

